The Development of LDAP-based Data Storage Library
in the Common Data Security Architecture

Along Lin Richard Brown

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
Bristol BS34 8QZ, U.K.
Email: alin@hplb.hpl.hp.com

Abstract

In this paper, we discuss the issues on developatg Storage Library (DL) based on
Lightweight Directory Access Protocol (LDAP) for @A 1.2 on HP-UX 11.0. We first
introduce CDSA 1.2 DL interface specification adn® representative LDAP APIs, and
then point out the issues on developing an LDAROd3L. Finally, some suggestions
are given.

Keywords: LDAP, CDSA, Secure Data Storage Library.

1. Motivations

With the support of network technologies includidgva, Web, CORBA and mobile
code, more network applications such as electromiemerce over the Internet have been
developed. One major concern is security and pyivAenong the proposed security
solutions, Intel's Common Data Security Architeet{CDSA) is a flexible framework
allowing software/hardware vendors to provide addecurity modules. It supports a
complete set of security services and interopatgbiletween security applications
developed on different platforms.

CDSA is an extensible, standards-based, industggted framework. Since the Open
Group adopted CDSA 2.0 specification in Decemb&71 @& has been widely supported.
In July 1999, HP released a CDSA 1.2 product. As @leour on-going research work,
we developed a Data Storage Library (DL) based losn €DSA 1.2 and Netscape
Directory Server v4 for HP-UX 11.0.

www.manaraa.com

In the following, we introduce CDSA 1.2 DL interfacspecification first, and then
analyze the issues on developing an LDAP-based Hnally, some suggestions for
given.

2. Data Storage Library Interface

The primary purpose of a DL is to provide accessddificates, certificate revocation
lists (CRLS), keys, policies and other securityatetl objects in a persistent data store by
translating calls from the DL interface into thetina interface of the data store. Stable
data storage can be provided by one of the follgaicommercially available database
management system product, directory service, custardware-based storage device or
native file system.

The data storage library Service Provider Interfd8®I1) defines four categories of
operations.

» Data storage library operation DL_Authenticate@jeh is used to control access
to the data storage library. A user may be requicedresent valid credentials to
the data storage library prior to accessing anyhefdata stores embedded in the
DL module.

« Data store operations, which operate on a datae sera single unit. These
operations include opening, closing, creating, tiede importing and exporting
data stores.

» Data record operations, which operate on a singéend of a data store. They
include adding new data objects, deleting dataatbj@nd retrieving data objects
based on application-provided selection criteria.

 DL_PassThrough(), which is used to allow data sthibearies to expose
additional services beyond what is currently defiirethe CSSM API.

3. LDAP-based DL Development Analysis
3.1 DL _Authenticate

CSSM_RETURN CSSMDLI DL_Authenticate
(const CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAutheation)

This function allows the caller to provide autheation credentials to the DL module ata

time other than data store creation, deletion, opaport and export. AccessRequest
defines the type of access to be associated wétledher. If the authentication credential

www.manaraa.com

applies to access and use of a DL module in gerbeai the data store handle specified
in the DLDBHandle must be NULL. When the authoiizatcredential is to apply to a
specific data store, the handle for that data staust be specified in the DLDBHandle
pair.

Because a data store is implemented using direderyice, after a user has been
successfully connected to an LDAP server, accegismiay require some authentication
but the access mode is inappropriate for a data.sto

3.2 DL_DbOpen

CSSM_DB_HANDLE CSSMDLI DL_DbOpen
(CSSM_DL_HANDLE DLHandle,
const char *DbName, /Il The host name of tDAPR server
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAutheation,
const void *OpenParameters) /I The port numbbéne server

The function opens the data store with the spetiiigical name under the specified
access mode. If user authentication credentialseapeired, they must be provided. For
data store opening/closing functions, a data staree is the server name associated with
the corresponding directory. However, for dataestieletion, it is the distinguished name
for a data store to be deleted.

As pointed out in 3.1, access type may be inapmtgpfor an LDAP-based data store.
3.3DL_DbClose
CSSM_RETURN CSSMDLI DL_DbClose(CSSM_DL_DB_HANDLE.DBHandle)
This function closes an open data store. Afterber is unbound from the LDAP server,
any access to it will not be allowed.
3.4 DL _DbDelete
CSSM_RETURN CSSMDLI DL_DbDelete

(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_USER_AUTHENTIACTION_PTR UserAutheation)
This function deletes all records from the spedifitata store and removes all state

information associated with that data store. Pld&&saware that the data store name in an
LDAP-based DL is the distinguished name of an eintiy directory.

www.manaraa.com

3.5DL_Datalnsert

CSSM_DB_UNIQUE_RECORD_PTR CSSMDLI DL_Datalnsert
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_ATTRIBUTE_DATA_ PTR Attrilest
const CSSM_DATA_PTR Data)

This function creates a new persistent data reabtfde specified type by inserting it into
the specified data store. The values containedemew data record are specified by the
Attributes and theData. The attribute value list contains zero or moteitaite values.
TheData is an opaque object to be stored in the new record

In an LDAP-based DL, because the low level detafld DAP implementation are
unavailable, the unique identifier for a recoradpresented by its distinguished name in
a directory.

3.6 DL _DataDelete

CSSM_RETURN CSSMDLI DL_DataDelete
(CSsSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_UNIQUE_RECORD_PTR UnigueRecordiflen

This function removes the data record specifiedhgyunique record identifier from the
specified data store. In an LDAP-based DL, themstished name of an entry is used to
replace the unique record identifier.

3.7 DL _DataGetFirst

CSSM_DB_UNIQUE_RECORD_PTR CSSMDLI DL_DataGetFirst
(CsSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_QUERY_PTR Query,
CSSM_HANDLE_PTR ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

This function retrieves the first data record i thata store that matches the selection
criteria. The selection criteria (including selectipredicate and comparison values) are
specified in the Query structure. This functiorures the first record satisfying the query

in the list of Attributes and the opaque Data objéc@lso returns a results handle to be
used when retrieving subsequent records satisfifregquery. Finally, this function

www.manaraa.com

returns a unique record identifier associated whthretrieved record. This structure can
be used in future references to the retrieved aatard. If no records satisfied the query,
the EndOfdataStore flag will be CSSM_TRUE and thecfion will return NULL.

However, an LDAP-based search is based on the diaseguished name of the entry
that serves as the starting point of the searab difficult to get the information from the
current API specification.

3.8 DL_DataGetNext

CSSM_DB_UNIQUE_RECORD_PTR CSSMDLI DL_DataGetNext
(CSsSM_DL_DB_HANDLE DLDBHandle,
CSSM_HANDLE ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA PTR Attributes,
CSSM_DATA_ PTR Data)

This function returns the next data record refeezhdy the ResultsHandle. The
ResultsHandle references a set of records seletigdan invocation of the

DL_DataGetFirst function. The record values araimatd in the Attributes and Data
parameters. The function also returns a uniquerdeicentifier for the returned record. If
no other records satisfied the query, the EndOftate flag will be CSSM_TRUE and
the function will return NULL.

3.9 DL_PassT hrough

This function allows applications to call data sige library module-specific operations

that have been exported. Such operations may ircuéries or services that are specific
to the domain represented by a DL module.

We implemented about 20 operations specific to LEv&Bed DL.

3.10 Unsupported APIsin LDAP_based DL

3.10.1 DL _DbCreate

In LDAP-based DL, we assume that a directory haanbereated. Entries of different

schemas can be added into the directory withoutnigato create a data store later.

Therefore, this function is not supported.

3.10.2 DL_Dblmport
3.10.3 DL_DbExport

www.manaraa.com

The above two functions are not directly suppoligd DAP APIs even though they are
supported by Netscape Console.

3.10.4 DL _DbSetRecor dPar singFunctions
3.10.5 DL_DbGetRecordParsingFunctions

Because the details on LDAP service are not availdahe above two functions are not
supported.

3.10.6 DL _GetDbNameFromHandle

Because the semantics of a data store name isdistent in LDAP-based DL, this
function is not supported.

3.10.7 DL_DataAbortQuery
3.10.8 DL_FreeUniqueRecord

4. Netscape LDAP v4 API Specification

In the following, a set of representative LDAP ARdsgiven. They represent the main
categories of LDAP APIs. If an LDAP API has tworfws, only its synchronous version
is given. For simplicity, LDAPControl parametersdae ignored and assigned NULL.
4.1 |dap_init

LDAP *ldap_init (const char *host, int port)

Before you can connect to an LDAP server, you rieenitialize an LDAP session. If we
plan to connect to the LDAP server over a Secuck&s Layer (SSL), the procedure for
initializing an LDAP session differs. The returnazhnection handle will be needed to all
LDAP API functions for connecting, authenticatiagd performing LDAP operations on
a server.

The parameters host and port specify the host rrerdgort number of the LDAP server.
4.2 |dap_simple_bind_s

int Idap_simple_bind_s(LDAP *|d,

const char *who,
const char *password)

www.manaraa.com

LDAP v2 severs typically require clients to bindidre any operations can be performed.
The purpose is to provide information about thermtfis LDAP version, authentication
method and the client’s credentials to be useduddnentication.

4.3 |dap_unbind_s
int Idap_unbind_s(LDAP *Id)

When all necessary LDAP operations are performeslconnection to the LDAP server
needs to be closed.

4.4 |dap_search_ext_s

int Idap_search_ext_s(
LDAP *d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeoutp,
int sizelimit,
LDAPMessage **res)

This function sends an LDAP search request to tbeves. Here, DN means
Distinguished Name.

base specifies the starting point in the directorytloe base DN (an entry where to start
searching).

scope specifies the scope of the search. You can nathenwscope of the search to the
base DN, entries at one level under the base DNnties at all levels under the base
DN.

filter specifies a search filter.

attrs and attrsonly specify the type of information that you want tturn (which
attributes you want to retrieve) and whether yontta retrieve only the attribute type or
the attribute type and its values.

serverctrls and clientctrls specify the LDAP v3 controls associated with thearch
operation.

timeoutp andsizelimit specify the search constraints that you want aggb the search.
resis the returned result.

45|dap_add_ext_s

www.manaraa.com

int Idap_add_ext_s(
LDAP *d,
const char *dn,
LDAPMod *mods
LDAPControl **serverctrls,
LDAPControl **clientctrls)

dn specifies the DN for the new entry. For examptesaiid=alin, ou=people,
o=hpl.hp.com”.

mods specifies an array of LDAPMod structures to repnédlee attributes in the entry.
Each LDAPMod structure is used to specify the namgvalues of each attribute, which
is described as follows.

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {
char *modyv_strvals;
struct berval *modv_bvals;
} mod_vals;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals
} LDAPMod;

mod_op specifies the operation to be performed on thibates and the types of data
specified as the attributes values. It can be diieeofollowing values:

« LDAP_MOD_ADD adds a value to the attribute.

« LDAP_MOD_DELETE removes the value from the attridout

« LDAP_MOD_REPLACE replaces all existing values o tttribute.
mod_type specifies the attribute type you want to add, @eler replace the values of.
mod_values is a pointer to a NULL-terminated array of strivegjues for the attribute.
mod_bvalues is a pointer to a NULL-terminated array bérval structures for the
attribute.

4.6 |dap_modify_ext_s

int Idap_modify_ext_s(
LDAP *d,
const char *dn,
LDAPMod *mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

www.manaraa.com

dn specifies the DN for the entry to be modified.
mods specifies an array of LDAPMod structures to repndslee attributes and values that
you are adding, replacing, or removing.

4.7 |dap_delete ext_s

int Idap_delete_ext_s(
LDAP *d,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

dn specifies the DN for the entry to be deleted.

5. Problemswith Developing DL APIsin CDSA 1.2

After developing LDAP-based DL, we realize there some problems with developing
an LDAP-based DL.

* The unique record identifier of a data store recisrihappropriate for LDAP-
based DL. This is because it is hard for a DL depet to obtain the information
about the LDAP implementation. As a user of LDAIRediory service, LDAP-
based DL developer does not know about the indegetgils on entries in a
directory.

» If a data store is built as the server associatétl & directory, it is hard to
implement DL APIs for data store creation and defetHowever, if we assume a
directory has been built and a data store is adbraxfi the directory, it is difficult
to implement DL APIs for data store opening andsilg based on LDAP
directory service. Therefore, the semantics of & dd&ore name is inconsistent
when all of these data store operations need implemented. The ideal solution
is that a data store is implemented as a directdowever, there do not exist
LDAP APIs for creating/deleting/opening/closing ttheectory.

» Because the operations on entries in a directaybased on LDAP APIs, it is
both bizarre and inefficient to map the standar d&ructures for DL APIs to the
parameters to LDAP APIs, which are usually striragdd. Generally speaking,
LDAP APIs are much easier to use than DL APIs.

« The LDAP search is based on both the Distinguiddache (DN) of the starting
point and the scope of the search in the directbigwever, DL search API
contains neither the base DN nor the scope ofé¢lech. The information about
these parameters has to be included in the valtether parameters to the
corresponding DL API, which is rather bizarre.

www.manaraa.com

 Because data in an LDAP directory is organizedanadrically and only end
entries can be deleted, it is expensive to remobeaach of the directory by
recursively deleting all of its entry nodes.

» LDAP directory service supports multiple values & entry attribute, which is
not allowed in standard DL API. That is, if a useants to retrieve some entries
having multiple attribute values, the user will lneable to do that based on the
current standard CDSA DL APIs.

6. Conclusion

It is a little bizarre to develop an LDAP-based Dihere are several issues. First, the
mapping from a data store to a directory is noye8scond, the format and semantics of
standard DL APIs are based on low-level implemémtatdetails whereas LDAP
directory service is at high level. Third, the mpimpose of an LDAP directory service is
for retrieving information on entries whereas DL I&Rre for more general purpose.
Because there is little difference between CDSAOL2and CDSA 2.0 DL, these issues
remain same when developing Netscape directoneséased DL.

One benefit of an LDAP-based DL is that certifichtssed authentication is provided in
Netscape directory server v4. Because an LDAP-bBtechn retrieve entries efficiently
and support distributed data stores, it is ideasforing digital certificates and policies.

To support the DL development using directory segymore LDAP APIs will be needed
to implement data store operations such as crededetion and opening/closing.

In our current prototype implementation, we assuineefollowing points.

* Adirectory has been established.

» A data store is associated with either the dirgcsarver or the DN of an entry in
a directory depending on which DL API is dealt with

 The DN of an entry is mapped to the unique recdehtifier in CDSA 1.2 DL
specification.

« The record types in a data store are mapped tatthieute values by introducing
an extra attribute afecordType into the schema in directory service.

e Searching in LDAP-based DL is performed through thieole branch in a
directory rooted by a DN.

References
[1] Common Data Security Architecture Specification, Intel Architecture Labs, 1997.

[2] CSSM Application Programming Interface, Intel Architecture Labs, 1997.
[3] CSSM Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

www.manaraa.com

